UCSF Chimera

QUICK REFERENCE GUIDE
September 200

Commands

*reverse function ${ }^{\text {command }}$ available

2dlabels	create arbitrary text labels and place them in 2D
$a c$	enable accelerators (keyboard shortcuts)
addaa	add an amino acid to a peptide C-terminus
addh	add hydrogens
alias*	create an alias or list aliases
align	align two atoms along the line of sight
angle	measure a bond angle or torsion angle
bond*	add/delete bonds
bondcolor*	color bonds independently from atoms
bonddisplay	control how bond display depends on atom display
bondrepr	control the representation of bonds (wire, stick)
brotation	make a bond rotatable
cd	change the working directory
center	center the view on specified atoms
chain	chain specified atoms, undisplay the others
chirality	report the R/S configuration of a chiral center
clip*	move clipping planes
close	close a model
cofr*	report or change the center of rotation
color*	color atoms/bonds, ribbons, labels, and surfaces
colordef	define a new color
conic	create a shadowed space-filling image (static; UNIX only)
copy	save or print the displayed image
defattr	assign attribute values to atoms, residues, or models
delete	delete atoms and bonds
display*	display specified atoms
distance*	measure the distance between two atoms
echo	send text to the Reply Log
focus	adjust the view and center of rotation to the specified atoms
freeze	stop all motion
getcrd	report untransformed coordinates
hbonds*	(findhbond) identify possible hydrogen bonds
help	display the manual page for a command
ksdssp	determine secondary structure from protein coordinates
label*	display atom labels
labelopt	control the information in atom labels
linewidth	control the width of lines in the wireframe representation
load	restore a saved Chimera session
longbond	find and remove excessively long bonds
match	superimpose two models
matrixcopy	apply the transformation matrix of one model to another
matrixget	write the current transformation matrices to a file
matrixset	read and apply transformation matrices from a file

matrixset - write the current transformation matrices from a file
mmaker
modelcolor
movie
objdisplay*
open*
pdbrun
read
ribcolor* set ribbon color
rmsd
rock
roll
rotation
save
savepos*
scale*
section
select*
set*
show
sleep
source
stereo
stop
surface
surfcat
surfcolor
surfrepr
swapaa
swapna
system
tcolor
texture
$a y *$ set display at the model level
translate along the X, Y, or Z axis
push,pop push or pop images on the picture stack
rainbow color residues, chains, models over a range (default blue to red)
rangecolor color over a range according to attribute values
execute a command file, updating the display at the end control the representation of atoms and bonds (wire, stick, bs or b+s, sphere or cpk)
reset restore default or saved orientations
ribbackbone* allow residue ribbon and backbone atoms to be
displayed simultaneously
ribbon* display a secondary structure ribbon
ribbonjr create a ribbon image (static; UNIX only)
ribrepr control the ribbon representation (flat, edged, round)
rlabel* display residue labels
(matchmaker) align models in sequence and then superimpose them accordingly
and image frames and assemble them into a movie create a shadowed solid stick image (static; UNIX only) display graphical objects
open structures or data for display or execute a command file
send an annotated PDB file of the current display to the system shell (UNIX only)
evaluate the RMSD between specified sets of atoms
rock about the X, Y or Z axis
roll about the X , Y , or Z axis
make a bond rotatable
save the current Chimera session
save the current orientations
scale the view
move the clipping planes in parallel activate models for motion or select atoms for further operations
set options (see Set/Unset Options)
display specified atoms, undisplay the others
suspend command processing for a specified length of time
execute a command file, updating the display continually switch amongst stereo options and mono viewing exit from Chimera
calculate and display molecular surface
(msms cat) group atoms for subsequent surface calculations
set whether surface color is determined at the atom or model level
(msms repr) control surface representation (solid, mesh, dot)
mutate amino acid residues
mutate nucleic acid residues
send a command to the system shell
color using texture map colors define texture maps and associated colors
thickness turn $d w^{*}$ $v d w d e f i n e$ $v d w d e n s i t y$ version
wait
window write writesel
x3dsave
move the clipping planes in opposite directions rotate about the X, Y, or Z axis
display van der Waals (VDW) surface set VDW radii et VDW surface dot density
how copyright information and which version of Chimera is being used
suspend command processing until motion has stopped adjust the view to contain the specified atoms ave a molecule model as a PDB file
write a parsable text file containing specifications of the urrently selected (or unselected) item

Set/Unset Toggle Options
autocolor make each newly opened model a unique color independent make each model rotate about its own center of mass instead of the combined center of mas

Set/Unset Value Options

bg_color set background color; value can be any color name
dc_color set depth cue color; value can be any color name

Miscellaneous Operations (Default Settings)

Action	Procedure
picking from the screen	
adding to a selection	Ctrl-left mouse button XY-rotation
Shift-Ctrl-left mouse button left mouse button when inside the "spaceball" left mouse button when outside the "spaceball" middle mouse button	
XY-translation	Ctrl-middle mouse button right mouse button or the Side View (below)
Z-translation	Tools...Viewing Controls...Side View
Scaling	Tools...General Controls...Command Line
Command Line	Tools...Utilities...Reply Log
Reply Log	Favorites...Preferences
Preferences	Tools category of Preferences (above); also specify which tools start when
listing of tools/extensions	
Chimera starts, which appear in the	

Copyright © 2005, The Regents of the University of California
All Rights Reserved

Atom Specification Symbols		
Symbol	Function	Usage
\#	model number	\# model (integer)
\#.	submodel number	\#. submodel (integer)
:	residue	: residue (name or number)
::	residue name	:: residue
:.	chain ID	:. chain
@	atom name	@atom
@.	alternate location ID	@.alt_loc
-	range	specifies a range of models, submodels, or residues
,	name separator	separates models or residues, ranges of models or residues, or names of atoms
*	whole wildcard	matches whole atom or residue names, e.g.,:*@CA specifies the alpha carbons of all residues
=	partial wildcard	matches partial atom or residue names, e.g., @ $\mathbf{C}=$ specifies all atoms with names beginning with C
?	single-char wildcard	used for atom and residue names only, e.g., :G?? selects all residues with three-letter names beginning with G
;	command separator	separates multiple commands on a single line
z<	zone specifier	$\mathbf{z}<$ zone or $\mathbf{z r}<$ zone specifies all residues within zone angstroms of the indicated atoms, and za<zone specifies all atoms (rather than entire residues) within zone angstroms of the indicated atoms. Using > instead of $<$ gives the complement.
\&	intersection	intersection of specified sets
\|	union	union of specified sets
\sim	negation	negation of specified set (when space-delimited)

Atom Attributes

Usage	Description
@/altLoc=altloc	altloc is the alternate location ID
@/bfactor=bfactor	bfactor is the B-factor
@/color=color	color is the color assigned on a per-atom basis
@/drawMode=mode	mode can be 0 (dot, as in wireframe), 1 (sphere, as in CPK), 2 (endcap, as in stick), or (ball, as in ball-and-stick)

$\left.\begin{array}{ll}\text { @/defaultRadius=rad } \\ \text { @/display } & \text { rad is the default VDW radius } \\ \text { whether display is enabled at the } \\ \text { atom level } \\ \text { @/element=atno } \\ \text { @/idatmType=type } \\ \text { atno is the atomic number } \\ \text { @/label=label } & \begin{array}{l}\text { type is the atom type } \\ \text { whether the atom is labeled } \\ \text { label is the text of the atom label }\end{array} \\ \text { @/name=name } & \begin{array}{l}\text { labcolor is the color of the atom } \\ \text { label }\end{array} \\ \text { @/occupancy=occupancy } & \begin{array}{l}\text { name is the atom name } \\ \text { occupancy is the occupancy }\end{array} \\ \text { @/sadius=radius } & \begin{array}{l}\text { radius is the current radius (may } \\ \text { have been changed from the } \\ \text { default VDW radius) }\end{array} \\ \text { @/surfaceCategory=catname } \\ \text { nis the atom serial number in the } \\ \text { input file } \\ \text { catname is the category the atom } \\ \text { belongs to for surface calculation } \\ \text { purposes (main, ligand, etc.) }\end{array}\right\}$

	Residue Attributes Description
Usage	whether the residue is in an alpha helix whether the residue is in HETATM records in the input PDB file
:/isHelix	whether the residue is in a beta strand whether the residue is in a turn according to PDB TURN records
:/isStrand or :/isSheet	value is the Kyte-Doolittle hydrophobicity
:/isTurn	ribcolor is the color of the residue's ribbon segment
:/ribbonColor=ribcolor	
:/ribbonDisplay	whether ribbon display is turned on for the residue (can be true for residues such as water that cannot be shown with ribbon)
$: /$ mpe=resname	resname is the residue name

Molecule Model Attributes

Usage	Description
\#/color=color	color is the color assigned on a per-model basis

\#/display

\#/explicitHydrogens
\#/lineWidth=width
\#/pointSize=size
\#/vdwDensity=density
density is the dot density used for VDW surfaces

Atom Specification Examples

\#0

all atoms in model 0

\#3:45-83,90-98

- residues 45 through 83 and 90 through 98 in model 3

:lys,arg

- lysine and arginine residues
:12,14@ca
- alpha carbons in residue 12 and residue 14

:12:14@ca

- all atoms in residue 12 and the alpha carbon in residue 14
:.A@ca,c,n,o
- peptide backbone atoms in chain A

:50.B,.D

- residue 50 in chain B and all residues in chain D

:12-15,16-18.a,15.b@ca

- CA atoms within the following residues: 12 through 15 (with no chain ID), 16 through 18 in chain A, and 15 in chain B
\#0.1-3,5
- submodels 1-3 of model 0 and all of model 5
\#0.1-3.. 5
- submodels 1-3 of model 0 and submodel 5 of all models

ligand

- any/all residues automatically classified as ligand

element.S

- all sulfur atoms
@ca/!label and color!=green and color!=red
- atoms named CA which are not labeled, and are not green or red
@/color=yellow or color=blue and label
- atoms that are yellow and atoms that are both blue and labeled
:asn/isHelix
- asparagine residues in alpha helices

\#1:asp,glu \& \#0 z<10

- aspartate and glutamate residues in model 1 within 10 angstroms of model 0
solvent $\& \mathbf{N g}+\mathbf{z}<\mathbf{3} \mid$ solvent $\& \mathbf{N} 3+\mathrm{z}<\mathbf{3}$
- solvent residues within 3 angstroms of guanidinium nitrogens or
$s p 3$-hybridized, formally positive nitrogens
@/bfactor>50 \& ${ }^{\sim}$ solvent $\boldsymbol{\&} \sim$ ions
- atoms with B-factor values over 50, excluding solvent and ions

UCSF Chimera was developed by the Computer Graphics Laboratory at the University of
California, San Francisco, under support of NIH grant P41-RR01081. The software is
copyrighted and licensed by the Regents of the University of California.

