IS VIRTUAL REALITY USEFUL FOR VISUALIZING AND ANALYZING MOLECULAR STRUCTURES?

TOM FERRIN AND TOM GODDARD

RESOURCE FOR BIOCOMPUTING, VISUALIZATION AND INFORMATICS

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

ACS Fall 2019 National Meeting & Exposition
WHO WE ARE

• NIH supported research lab with long history of developing and distributing interactive molecular visualization and analysis applications

• Founded in 1969 by Bob Langridge

• Moved to UCSF in 1976

• Langridge retired in 1993, Ferrin became PI

• MIDS → Midas/MidasPlus (80’s & 90’s) → UCSF Chimera → ChimeraX (2017)

• All the above software supported viewing molecules in stereo.
Evans & Sutherland Picture System 2 with Bausch and Lomb mechanical shutters 1980

Silicon Graphics O₂ workstation with Stereo Graphics eyewear 1990

Christie Digital Mirage video projector with RealD CrystalEyes eyewear 2005
TODAY STEREO IS ALL BUT A DEAD TECHNOLOGY

• Miracube G240M Stereoscopic Computer Display - No longer available
• NVIDIA 3D Vision No longer available, no driver support
• 3D TVs Samsung, LG, Sony and Panasonic stopped introducing new models in 2017
• “Old School” approaches still viable but have significant disadvantages:

Red/Cyan Anaglyph glasses

Side-by-Side images
VR HEADSETS PROVIDE IMMERSIVE STEREO VIEWING AND MORE…

- High resolution images (typically 1,440 x 1,280 each eye)
- Wide field of view (200° or more)
- Fast refresh rates (~80-90 Hz)
- Rapid tracking of head position
- Dual 6 degree-of-freedom input devices, usually with multiple auxiliary controls like push buttons and joysticks/touchpads
- Cost similar to active stereo glasses

Oculus Rift S
BUT THERE ARE SEVERAL IMPORTANT CHALLENGES

• Head tracking demands fast update rates in order to avoid severe nausea and this requires a high-end CPU, GPU and 16GB+ of memory
 • Intel i5 or i7
 • NVIDIA GTX 1070/1080, AMD Radeon RX 5700 ($750 - $1,000)

• 6 DOF input devices require development of new user interfaces which are time-consuming to code, test and refine

• No easy way to provide keyboard input

• Ability to support multiple users/participants is limited

• Evolving OS support – Windows 10 pretty good, Linux limited, macOS ???

• Required 3rd party software (e.g., SteamVR) still immature

• There’s no standardized API among headset providers
VR AT THE RBVI

Computational Docking

cryoEM

Light Sheet Microscopy

Medical CT Imaging
MATT JACOBSON’S LAB AT UCSF USES VR FOR THEIR WEEKLY GROUP MEETINGS ABOUT DRUG DESIGN

- Usually two group members use VR while others participate via video projector
- Projector shows what one of the VR users sees
- Each VR headset runs on a separate computer (a requirement of the VR driver software)
- Participants can connect to VR session remotely
 - We use remote VR meetings at UCSF with NIH and Benaroya Institute in Seattle
 - Network firewalls can block connections in high security environments
Video URL: https://www.rbvi.ucsf.edu/chimerax/data/acs-aug2019/images/vruse.mp4
• Some cancers commonly exhibit a mutation in receptor tyrosine kinase (KIT) protein causing over-activation and allowing cancer cell proliferation

• The cancer drugs midostaurin and avapritinib block KIT signaling by binding in its ATP binding site, but some patients acquire secondary KIT mutations that make these drugs ineffective

• Several mutations that result in drug resistance were distant from the binding site yet still disrupted drug binding BUT HOW?

• Jacobson's lab hypothesized the drug resistance mechanism based on observations using VR

• Distant mutations were found to rigidify part of the protein which lead to different dynamics of the flexible P-loop region (coordinates phosphate transfer) in the ATP binding site
Some KIT mutations (circles) inhibit the drug avapritinib (shown in purple) through an indirect interaction that moves the P-loop region, thereby blocking binding.

ATP-competitive inhibitors midostaurin and avapritinib have distinct resistance profiles in exon 17-mutant KIT. Apsel et al., Cancer Res. 2019 Jul 3.
Video URL: https://www.rbvi.ucsf.edu/chimerax/data/vr-demos-feb2019/opioids.mp4
VR EQUIPMENT: A PLETHORA OF CHOICES

- HTC Vive Pro
- Oculus Rift S
- Microsoft Hololens 2
- Magic Leap
- Oculus Quest
- HTC Wireless Adapter
CRITICAL TO SUCCESSFUL USE OF VR TECHNOLOGIES...

Application-Specific User Interfaces
Scooter Morris
Greg Couch
Tom Goddard
Eric Pettersen
Conrad Huang
Elaine Meng

www.rbvi.ucsf.edu
Funding: NIH R01 GM129325 and Office of Cyber Infrastructure and Computational Biology